Controller design and region of attraction estimation for nonlinear dynamical systems

نویسندگان

  • Milan Korda
  • Didier Henrion
  • Colin N. Jones
چکیده

This work presents a method to obtain inner and outer approximations of the region of attraction of a given target set as well as an admissible controller generating the inner approximation. The method is applicable to constrained polynomial dynamical systems and extends to trigonometric and rational systems. The method consists of three steps: compute outer approximations, extract a polynomial controller while guaranteeing the satisfaction of the input constraints, compute inner approximations with respect to the closed-loop system with this controller. Each step of the method is a convex optimization problem, in fact a semidefinite program consisting of minimizing a linear function subject to linear matrix inequality (LMI) constraints. The inner approximations are positively invariant provided that the target set is included in the inner approximation and/or is itself invariant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of Stability Domains for Nonlinear Dynamical Systems Using the Weighted Residuals Method

Finding a suitable estimation of stability domain around stable equilibrium points is an important issue in the study of nonlinear dynamical systems. This paper intends to apply a set of analytical-numerical methods to estimate the region of attraction for autonomous nonlinear systems. In mechanical and structural engineering, autonomous systems could be found in large deformation problems or c...

متن کامل

Stability and Robust Performance Analysis of Fractional Order Controller over Conventional Controller Design

In this paper, a new comparative approach has been proposed for reliable controller design. Scientists and engineers are often confronted with the analysis, design, and synthesis of real-life problems. The first step in such studies is the development of a 'mathematical model' which can be considered as a substitute for the real problem. The mathematical model is used here as a plant. Fractiona...

متن کامل

Estimation of the Domain of Attraction of Free Tumor Equilibrium Point for Perturbed Tumor Immunotherapy Model

In this paper, we are going to estimate the domain of attraction of tumor-free equilibrium points in a perturbed cancer tumor model describing the tumor-immune system competition dynamics. The proposed method is based on an optimization problem solution for a chosen Lyapunov function that can be casted in terms of Linear Matrix Inequalities constraint and Taylor expansion of nonlinear terms. We...

متن کامل

Observer Based Fuzzy Terminal Sliding Mode Controller Design for a Class of Fractional Order Chaotic Nonlinear Systems

This paper presents a new observer based fuzzy terminal sliding mode controller design for a class of fractional order nonlinear systems. Robustness against uncertainty and disturbance, the stability of the close loop system and the convergence of both the tracking and observer errors to zero are the merits of the proposed the observer and the controller. The high gain observer is applied to es...

متن کامل

Stabilization of Nonlinear Control Systems through Using Zobov’s Theorem and Neural Networks

Zobov’s Theorem is one of the theorems which indicate the conditions for the stability of a nonlinear system with specific attraction region. We have applied neural networks to approximate some functions mentioned in Zobov’s theorem in order to find the controller of a nonlinear controlled system whose law in a mathematical manner is difficult to make. Finally, the effectiveness and the applica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013